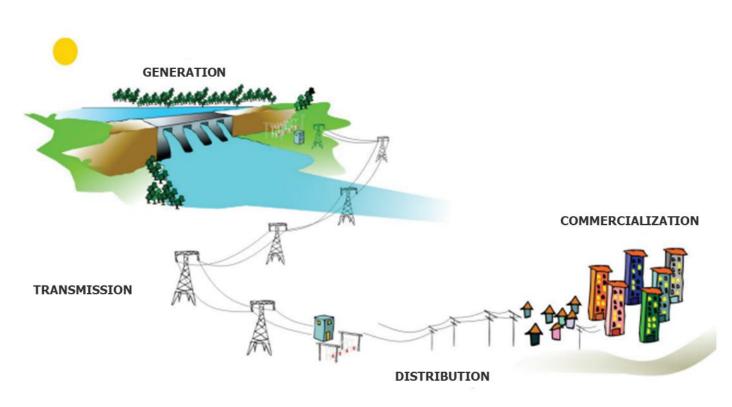


What you need to know...

- ✓ Which institutions determine the direction of the sector?
- ✓ What are the main variables for the Brazilian electricity sector?
- ✓ What are the characteristics of each generation source?

1.1 Sector Overview



Institutional Framework

Presidency of the Republic - Decrees **National MME** Congress **CMSE CNPE** Planning, management and Laws Oversees supply Defines energy policy to development of legislation. **Policies** continuity and ensure supply stability Supervision and control of policy reliability execution **EPE** - Generation and transmission expansion planning Regulation and **ANEEL** — Regulates and supervises generation, transmission, distribution and commercialization Inspection ONS CCEE **Institutional** Controls the operation and dispatch of Manages market transactions in the Agents the SIN (National Interconnected ACR and ACL (clearing house) and conducts official auctions System) plants Generation **Transmission** Distribution Commercialization Segments

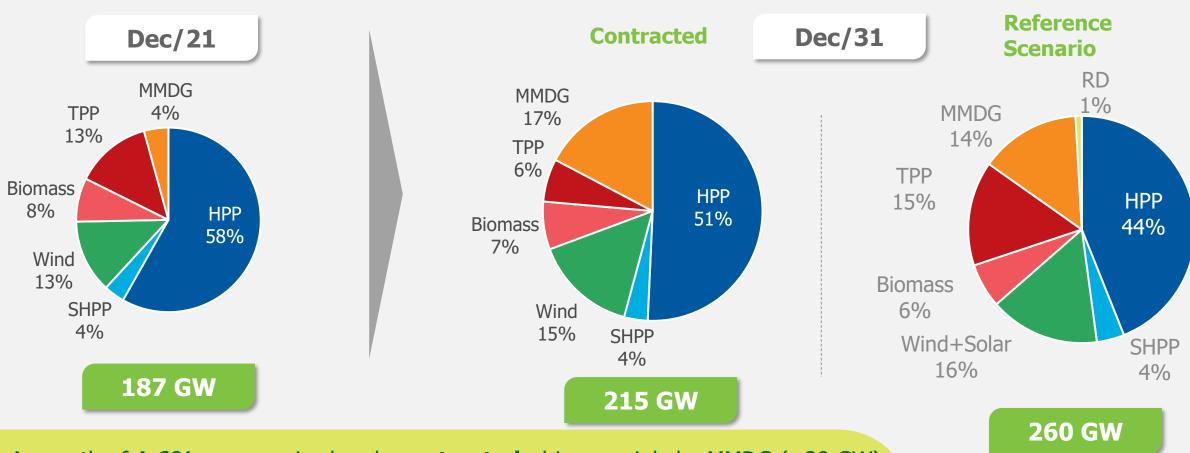
CONSUMER

Overview: Generation in the Electric Sector

Generation Sources

The generation of electrical energy involves the transformation of primary sources (gravitational, thermal and kinetic potential energy) into electricity.

Among the sources of energy generation in Brazil are: hydroelectric, wind, solar, biomass, fossil fuels and nuclear.


Source: ANEEL

Brazilian Electrical Matrix

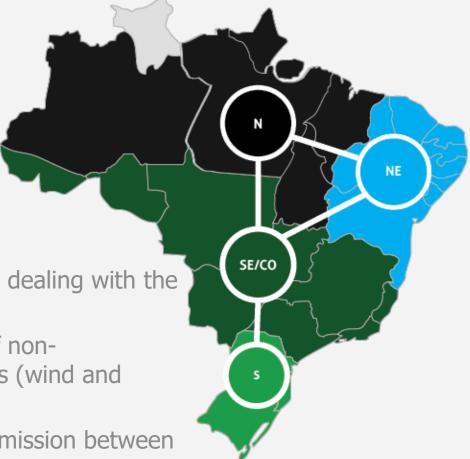
Evolution of Installed Capacity (GW)¹

A growth of **1.6%** per year is already **contracted**, driven mainly by MMDG (+29 GW) and wind (+9 GW).

EPE estimates in its reference scenario an even greater expansion, of **3.7%** per year, mainly due to thermal plants, according to energy policy guidelines.

ONS Dispatch

It is up to the ONS to operate the SIN in an integrated, equitable, transparent and neutral way to **ensure the security and continuity of the power supply**, always at the lowest possible cost.


For this, ONS acts on 3 fronts:

- Transmission administration
- Operation planning and scheduling
- Real-time operation

In practice, this means dealing with the complexity of:

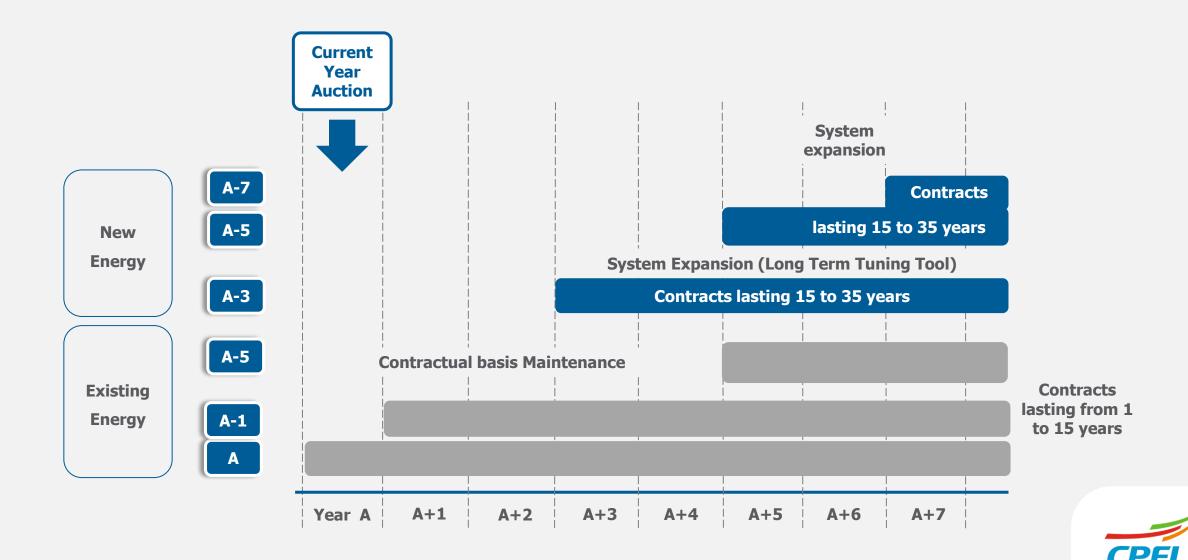
- Strong expansion of nondispatchable sources (wind and solar)
- Limitations on transmission between subsystems
- Run-of-the- river Hydroelectric plants
- High costs in thermal dispatch

Electric Sector Model - Contracting Environments

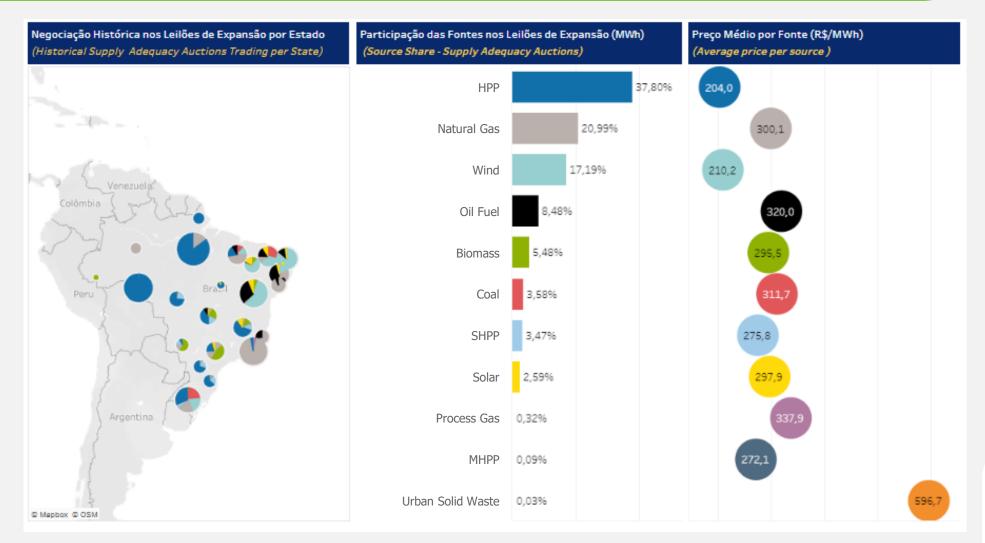
Free Contracting Environment (ACL)

Regulated Contracting Environment (ACR)

companies



Free Consumers



Energy auctions

Energy auctions

The CCEE, Chamber of Commercialization of Electric Energy, provides information on the auctions on its website, such as participation in the expansion and average prices.

Auction Contracts: Quantity or Availability

Energy purchase agreement in the regulated market (CCEAR)

Concept

Quantity

 Generation companies undertake to supply a defined amount of energy Q (MWh) for a certain period of time, at a defined price P (R\$/MWh)

Availability

- Generation companies commit to supply a defined volume of Q energy (MWh), depending on the availability of their generation capacity and will receive a fixed monthly revenue
- If there is a dispatch, the buyer pays the CVU¹ (R\$/MWh) of generation G (MWh)

Revenue

Revenue = $Q \times P$

Q: Amount of Energy (MWh)

P: Price (R\$/MWh)

Plant without dispatch:

Revenue = Fixed Revenue

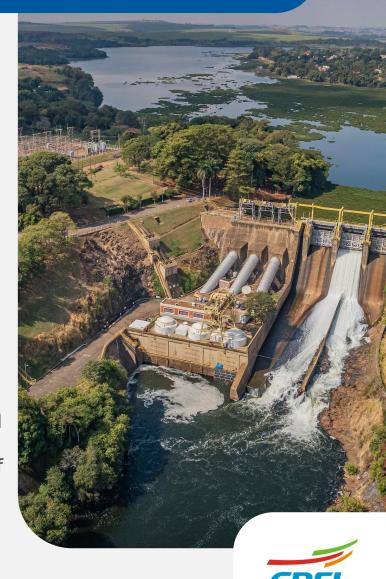
• Plant with dispatch:

Revenue = Fixed Revenue + G x CVU

1.2 Hydro Source

Energy Reallocation Mechanism — MRE¹

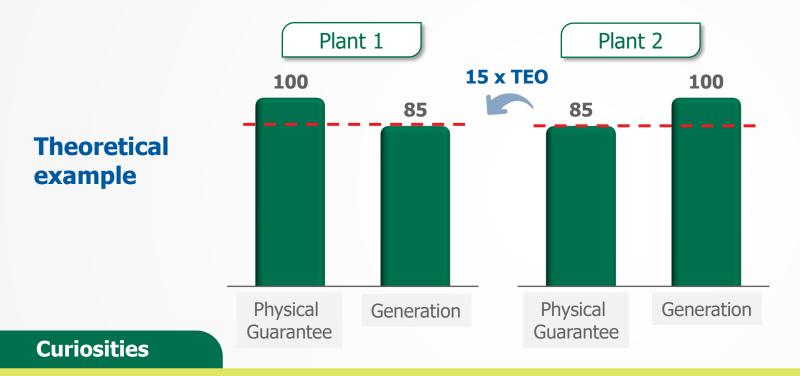
The "condominium" of HPPs and SHPPs: 2 main goals


- 1) Enable Centralized and Optimized Operation of the SIN, under the coordination of the ONS
- 2) Share Hydrological Risk between its plants, which are located in different river basins and subject to different hydrological regimes

Mandatory Participation:

- Centrally dispatched hydroelectric projects (generation dispatch coordinated, established, supervised and controlled by the ONS)
- Performance is assessed by monthly application of the Assured Energy Reduction Mechanism – MRA (Prolonged unavailability reduces the Physical Guarantee for the purposes of apportionment in the MRE)

Optional Participation:


- Hydroelectric projects <u>not</u> centrally dispatched
- Every August, the average electricity generation of each project in recent years is evaluated.
- If this average is lower than the values stipulated by ANEEL, the enterprise is excluded from the MRE (operating time ≥ 120 months → ≥ 85% of the PG)
- Meeting the values is a requirement to return to the MRE

MRE and the operation optimization

Goal 1: Centralized and Optimized Operation of the SIN

The energy transferred between the MRE plants must be valued by the Optimization Energy Tariff (TEO)

In 2022

TEO: R\$ 14,04/MWh

TEO Itaipu: R\$ 55,70/MWh

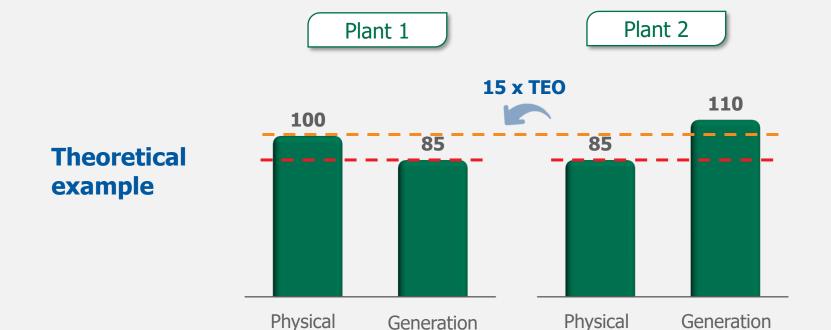
TAR: R\$ 83,78/MWh

- TEO is made up of O&M costs and TAR (7%) and updated annually by the IPCA.
- For HPP Itaipu, a specific TEO is calculated annually, established by the variable cost of the plant (calculated in dollars per GWh), converted by the geometric average of the dollar in the last twelve months.
- The **TAR** (reference tariff) is used in the calculation of the amount to be paid by hydroelectric generators to the Union, states and municipalities as Financial Compensation for the Use of Water Resources CFURH. The value is obtained from the costs of the distributors with the purchase of hydraulic energy, carried out directly with generators.

MRE and Hydrological Risk (GSF)

Goal 2: Share the Hydrological Risk among its plants

Total generation > Total Physical Guarantee


Surplus generation → Secondary Energy

Guarantee

 Allocated Energy for each HPP = Physical Guarantee + fraction of Secondary Energy

Total generation ≤ Total Physical Guarantee

- Deficit → Generation Scaling Factor (GSF)
- Energy allocated to each HPP = a fraction of the physical guarantee

Guarantee

Secondary Energy

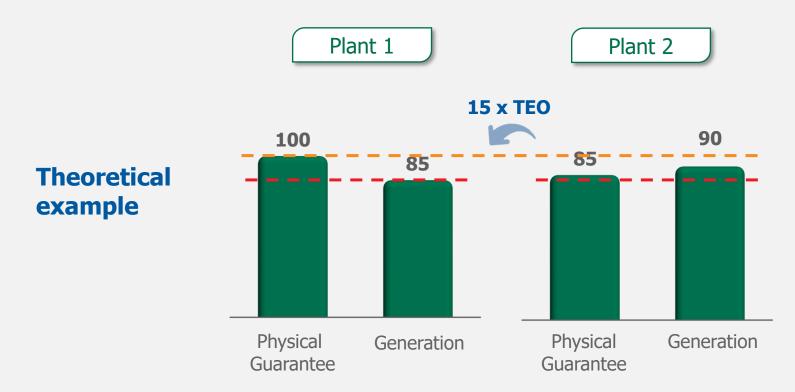
Total physical guarantee = 185

Total generation = 195

Variation = +10

 $(10 \times PLD) \div 2 \text{ plants}$

MRE and Hydrological Risk (GSF)


Goal 2: Share the Hydrological Risk among its plants

Total generation > Total Physical Guarantee

- Surplus generation → Secondary Energy
- Allocated Energy for each HPP = Physical Guarantee + fraction of Secondary Energy

Total generation ≤ Total Physical Guarantee

- Deficit → Generation Scaling Factor (GSF)
- Energy allocated to each HPP = a fraction of the physical guarantee

GSF

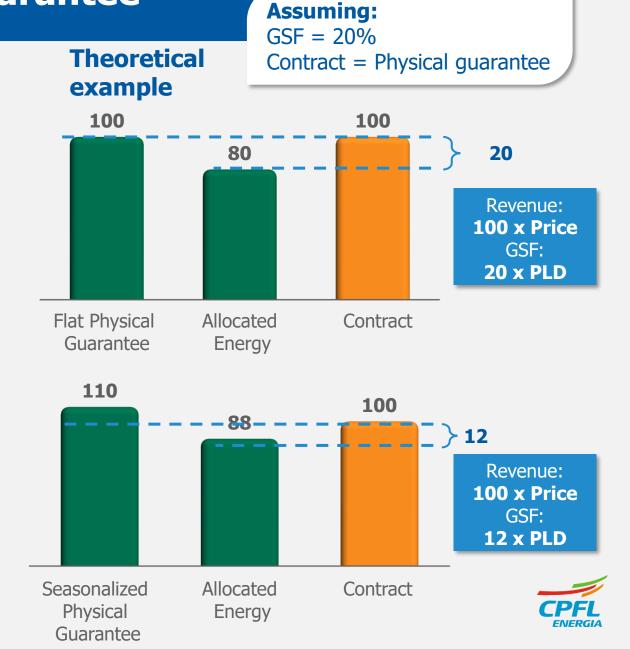
Total physical guarantee = 185
Total generation = 175
Variation = -10

(-10 x PLD) ÷ 2 plants

Did you know?!

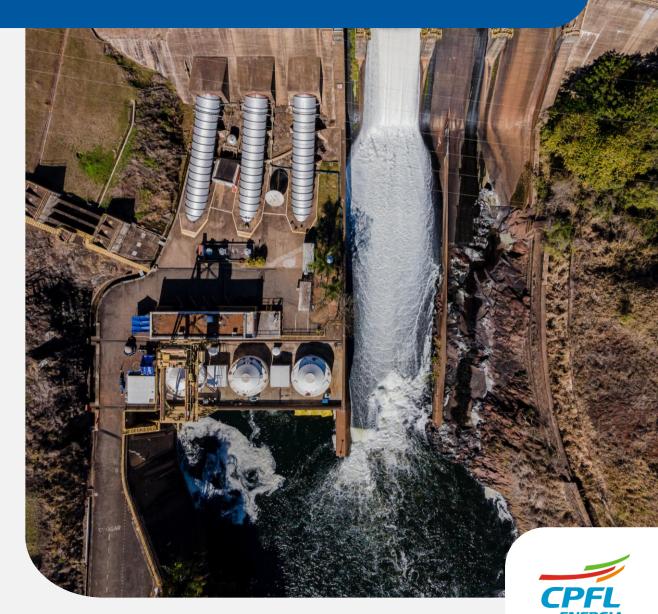
Renegotiation of the GSF is the transfer of the hydrological risk from the generator to the consumer through the payment of a monthly premium (insurance)

Seasonalization of Physical Guarantee

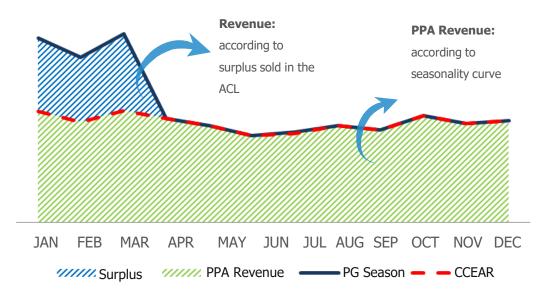

Process that always takes place in December, when hydro plants can allocate their physical guarantee on a monthly basis

- Changes contractual exposure (difference between allocated energy and sales contract), generating surpluses or deficits
- The monthly allocation can mitigate the loss risk, depending on the PLD curve
- There are 3 basic types of seasonalization:
 - MRE profile (average of all MRE plants)
 - Flat profile
 - Contract profile

Did you know?!


CPFL uses a statistical tool to forecast results and risk of losses for the different seasonality profiles, for each of its plants.

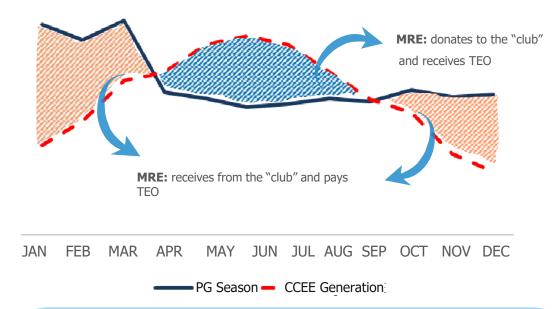
Generally, our plants **use the MRE profile**, which minimizes the risk of loss to the plant throughout the year.


Physical Guarantee Review (centrally dispatched plants - HPPs)

- The generation of hydroelectric plants depends on unpredictable hydrological conditions
- The physical guarantee is defined by the MME, through a statistical approach through computational models that use historical rainfall data
- It can be reviewed every five years, limited to a maximum variation of 5% per review or 10% over the entire period of the concession contract¹

HPPs and SHPPs – Revenue x Generated Energy

Revenue (R\$)


ACL Revenue:

- Surplus not committed to the auction are traded in the ACL via bilateral contracts
- Monthly revenue from surplus, as agreed in the contract

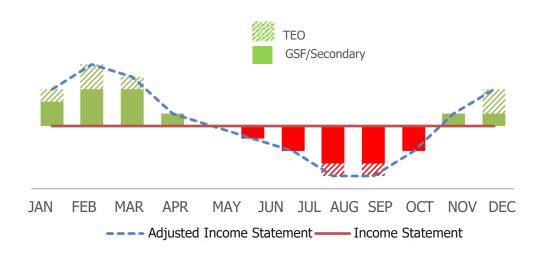
ACR Revenue:

 Revenue from CCEARs is proportional to the commercialized energy multiplied by the adjusted selling price

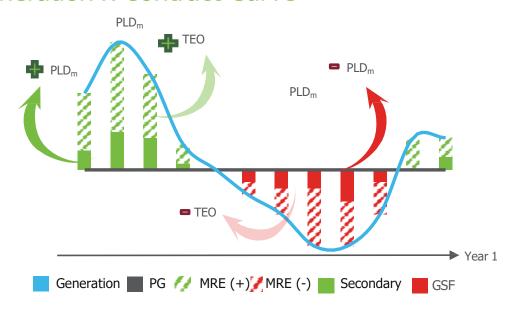
Generation x Contract Curve

Energy Reallocation Mechanism

Generation lower than the seasonalized PG is covered by other MRE plants and TEO* is paid for each MWh received


Generation higher than the seasonal PG is donated to other MRE plants and is received by TEO for each MWh donated

> *TEO = Optimization Energy Tariff TEO: 14.04 R\$/MWh


TEO Itaipu: 55.70 R\$/MWh

PROINFA – Revenue x Generated Energy

Revenue (R\$)

Generation x Contract Curve

Billing Fixed

1/12 of the contract value

discounted (or added) the adjustments resulting from accounting in the CCEE referring to the previous year, divided into 12 installments.

Accounting Flat contracted energy x contract price plus MCP

(TEO, Secondary/GSF, Reimbursement due to GSF renegotiation and PG exposures contract)

Cash

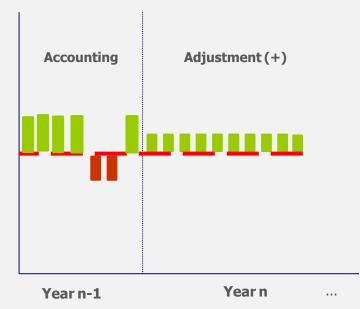
Billing recorded according to Invoice of the month 1/12 current

discounting the adjustments resulting from the previous year in 12 installments.

PROINFA – Annual assessment of the contract

Contract review:

If the physical guarantee is revised, there will be a change in the contracted energy, which will be applied to the subsequent year.

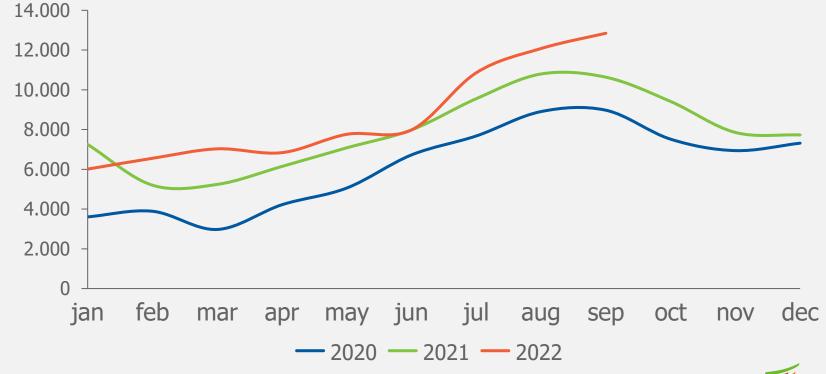

The review takes place as PRT 463/09:

- Reduction: average generation < 90% of PG for 5 years (or 80% for 4 years of operation);
- Increase: average generation > 110% for 5 years (or 120% for 4 years of operation).

CCEE effects: considered GSF and TEO

Annual assessment

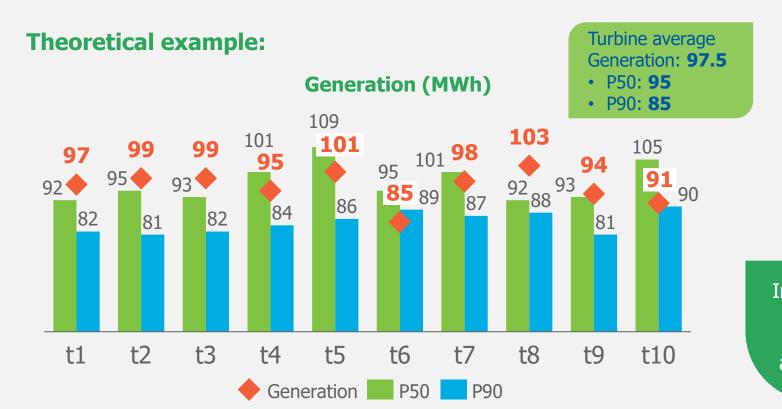
1.3 Wind Source



Seasonality

Wind farms show strong seasonality, concentrating around 2/3 of their generated volume – and consequently of their revenue – in the 2nd half of the year.

Brazil - Wind Energy Generated (average MW)



Source: ONS

P50 and **P90** certifications

A certified value of "P50" or "P90" describes an annual energy production value of the intermittent resource with a probability of 50% or 90%, respectively:

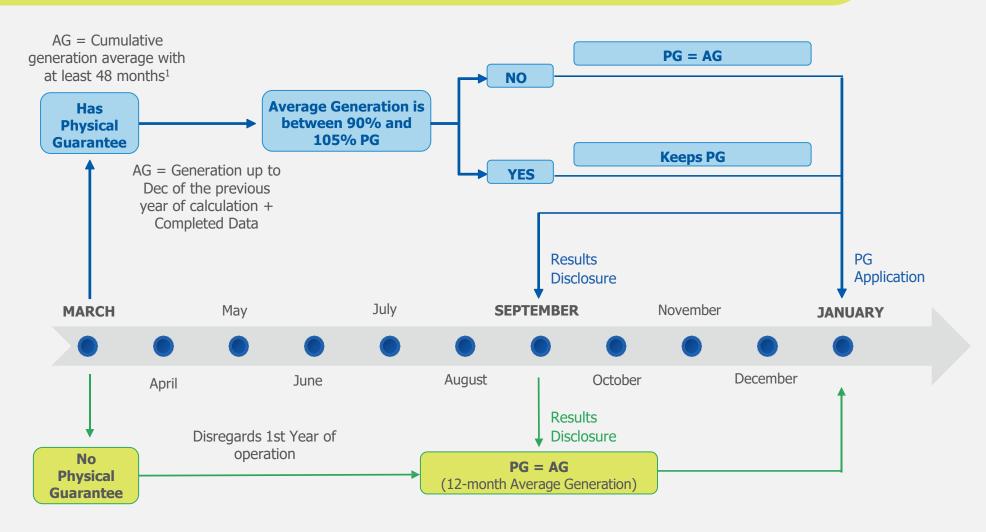
- P50 is the most likely value and can be exceeded with 50% probability
- P90 must be exceeded with a 90% probability and is considered a conservative estimate

Capacity Factor

- Capacity Factor is the indicator that defines how much a plant generates in relation to the maximum it could generate
- In other words, it is the ratio
 between the Generated Energy
 and the Installed Capacity of a
 power generation system
- Therefore, the maximum energy that a system can generate is its power multiplied by the analyzed time window.

$$CF = E_t = Energy_{annual}$$
 $P x t Capacity x 8760$

Eannual [MWh] is the energy generated in a period of time t (in this case 1 year)


P [MW] Is the Installed Capacity

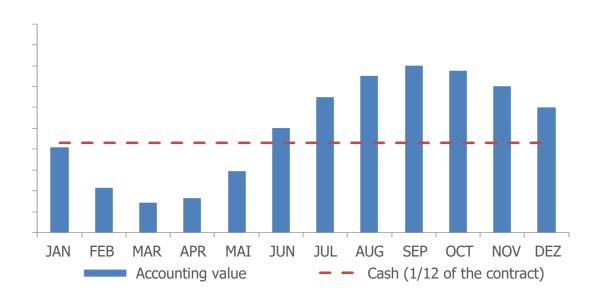
t [h] Is the considered timeframe (in this case 1 year or 8760 hours)

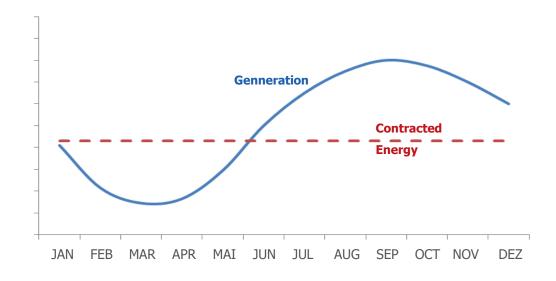
Physical Guarantee Review - Ordinance 416/2015

Valid for wind farms (except PROINFA and LER contracts)

Important

The **commercial operation entry** of the first machine is important for the calculation


The plants first year of commercial operation is always discarded


¹⁾ If the wind farm does not have a generation history of 48 months, it is completed with a Seasonal Physical Guarantee by the EPE. If you have more than 48 generation data, they must be multiples of 12 (60,72,84...).

Wind Farm – Revenue x Generated Energy

Revenue (R\$)

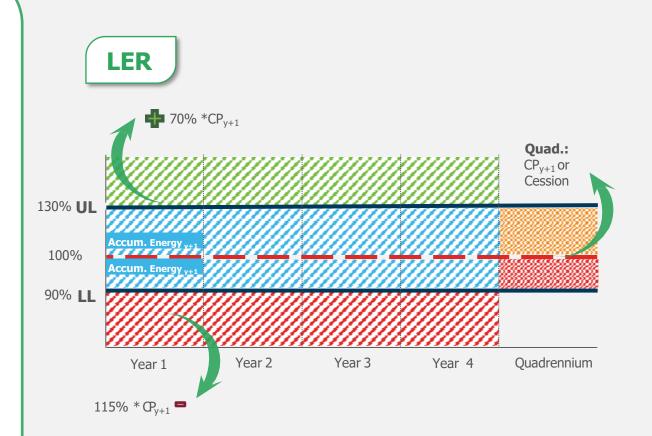
Annual Generation

Accounting

G (MWh) x P (R\$/MWh) + Adjustments

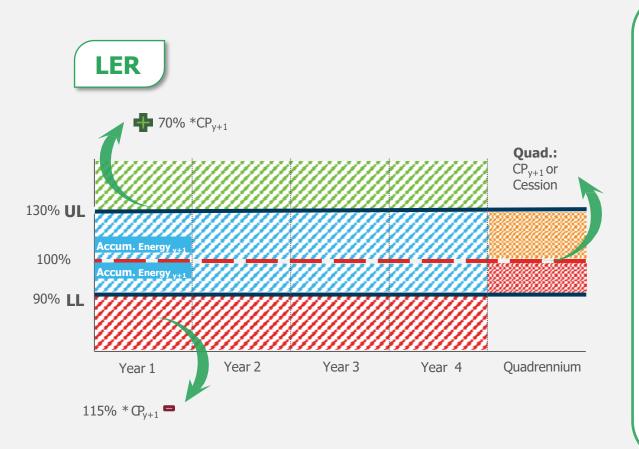
Cash

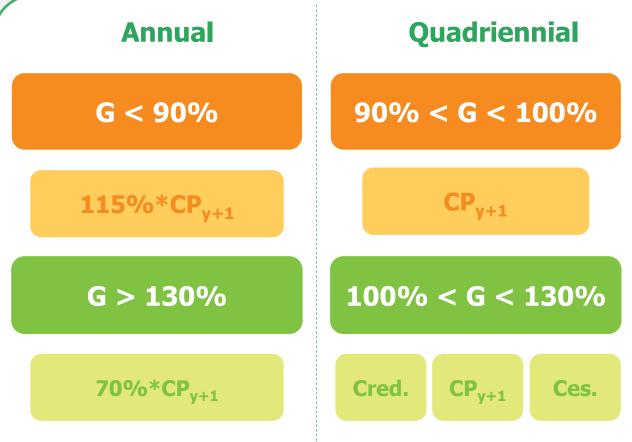
Fixed
1/12 of the contract value
+ refunds
+ receipts

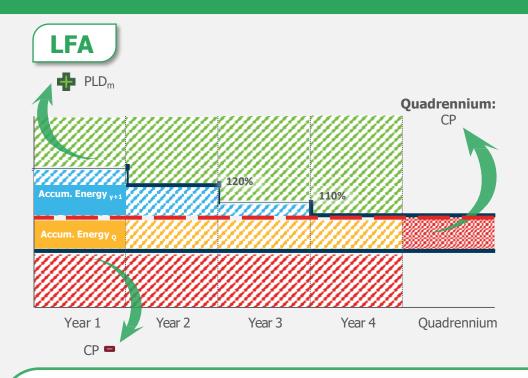

WF – Contract calculation

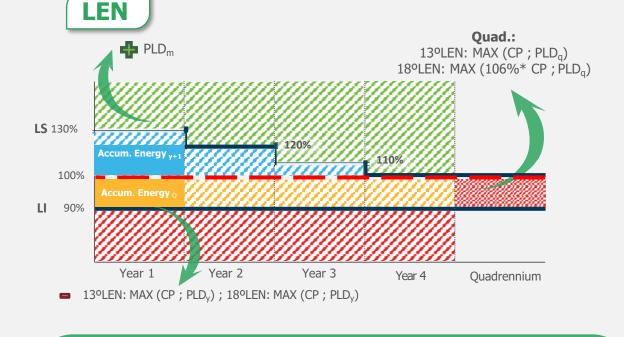
Annual calculation:

- **Generation** < **90%:** reimbursed with a 15% increase in the updated contract price in the subsequent year;
- **Generation > 130%:** received 70% of the updated contract price in the subsequent year.


Quadrennial calculation:


- Generation between 90% and 100%
 - Payment of the energy required to attend the updated contract price.
- Generation between 100% and 130%
 - Difference as credit for the next period;
 - Receipt at the updated contract price;
 - Cession of another enterprise of the same auction, same source and same submearket.
- **Quadrennial reconciliation**: calculation of the energy delivered in the 4 years in relation of contracted energy and possible revision of this.


WF – Contract calculation



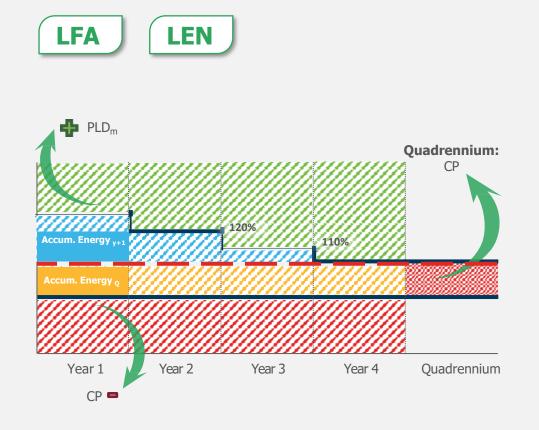
WF – Contract Calculation

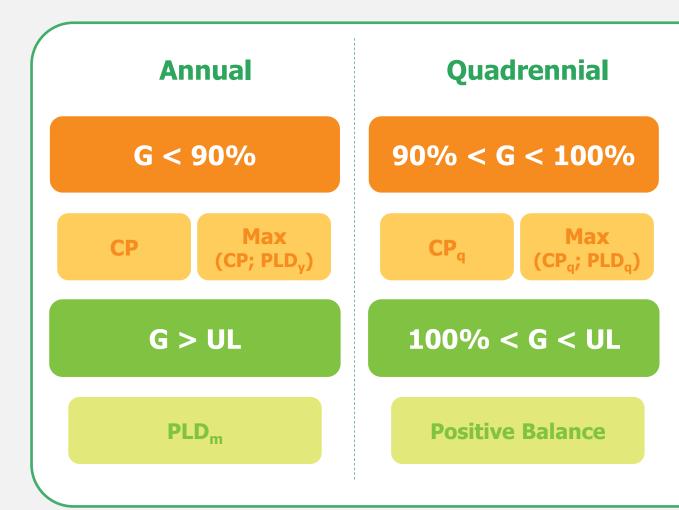
Annual calculation:

- Generation < 90% of the CE: reimbursed at the contract price of the last effective month of the year;
- Generation > higher bandwidth: paid the monthly PLD.

Quadrennial calculation:

- Generation between 90% and 100% of the CE will be accumulated over the quadrennium (deficit) and will be valued at the contract price of the last month of the quadrennium, when the quadrennial calculation occurs;
- Generation between 100% and the limit of the higher bandwidth of the contracted energy will be allocated of the next year (positive balance).

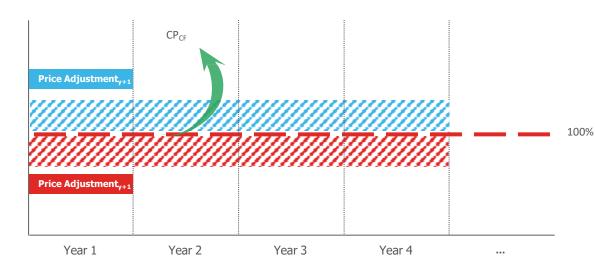

Annual calculation:

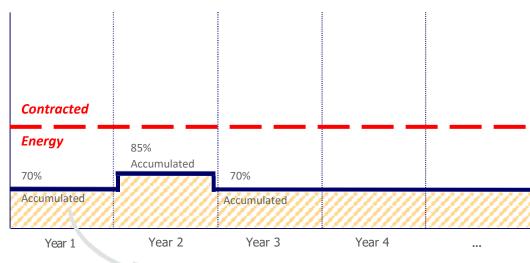

- Generation < 90% of the CE: reimbursed at the high value between medium annual PLD and contract price of the last effective month of the year;
- Generation > higher bandwidth: paid the monthly PLD.

Quadrennial calculation:

- Generation between 90% and 100% of the CE will be accumulated over the quadrennium (deficit) and will be valued at the high value between medium quadrennium PLD and contract price of the last month of the quadrennium, when the quadrennial calculation occurs;
- Generation between 100% and the higher bandwidth of the contracted energy will be allocated of the next year (positive balance).

WF – Contract Calculation



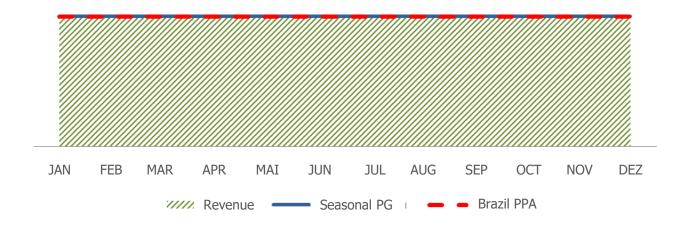


WF - PROINFA

Annual calculation and Contract revision

Penalty: contracted energy review

Contract calculation:


- Calculation carried out annually;
- Generated Energy higher/lower the contracted: receives/pays the difference in the next year through of inversely proportional adjustment in energy tariffs due to the production presented (capacity factor);
- Revenue guarantee of 70% of the contracted energy.

Contract revision:

- The contracted energy is revised side down if your accumulated generation is below 70% (except for year 2: 85%) and your tariff is corrected (Res. 62/2004);
- This movement there is the purpose of not penalize too much the investor, making with the recipes not vary much.

WF – Free Market (ACL)

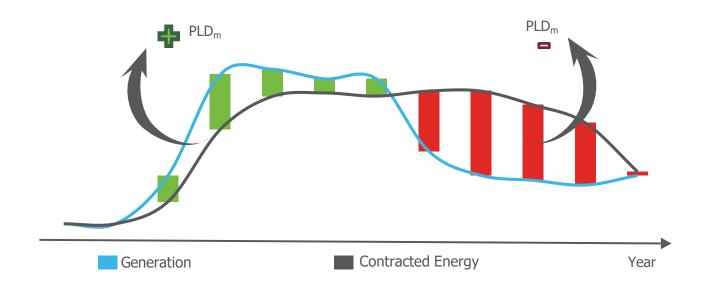
Contract and Revenue Calculation (R\$)

Contract calculation:

- The physical guarantee seasonality is realized by the generation agent
- The contract seasonality follows the profile of physical guarantee seasonality for the wind farms that have PG, and generation forecast for those that do not have
- Monthly revenue follows the seasonality profile defined in contract

Billing

CE (MWh) x P (R\$)


Result

Cash

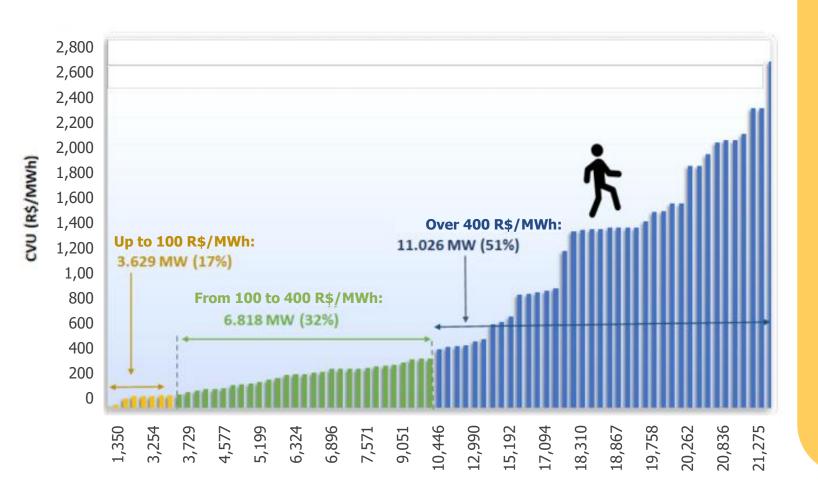
EC (MWh) x P (R\$)+ Settlement
$$PLD_{NF}$$

WF – Free Market (ACL)

CCEE Settlement

- Physical guarantee seasonality will not follow necessarily the generation profile
- All exposures, positive or negative, will be valued at PLD by the CCEE
- The contract defines that such exposures are assumed by the buyer up to a pre-established limit between the parties

1.4 Thermal Source


Thermal Generation in Brazil

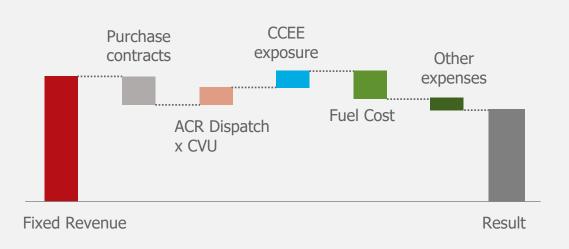
In Brazil, the thermoelectric generation has complementary role, with operation determined by the necessity to reduce hydroelectric production, seeking to preserve the reservoirs.

Unit Variable Cost (CVU) and Thermic Dispatch

Unit Variable Cost (CVU) is the value expressed in reais per MWh, needs to **cover all variable operating costs** of a certain thermic plant.

CVU is the decisive factor for the thermoelectric order by ONS, cause from them, the **order of economic merit** (dispatch queue) of power plants is established by the ONS. The **higher the CVU**, **the lower the probability of thermoelectric dispatch**.

Thermal Dispatch Out of Merit Order


The optimization of generation by the ONS depends on several factors, and the mitigation of the risk of water scarcity can lead to the **Thermal Dispatch Out of Merit Order**

- The ONS dispatches thermal plants in order of merit to supply energy.
- However, there are conditions that may **prevent** certain plants from dispatching energy when requested.
- Whether due to physical restriction, lack of connection or strategic decision by the ONS, the dispatch can be carried out by another plant.
- The substitute plant may have a higher CVU than determined, thus it would be out of merit order.

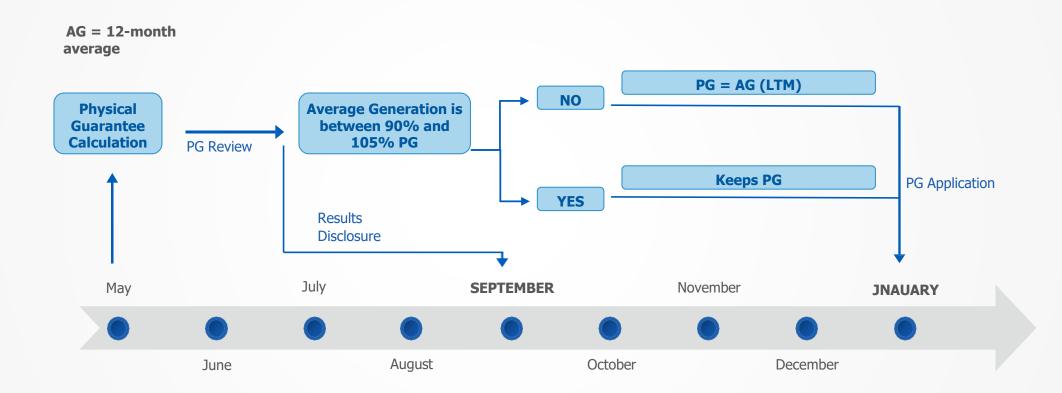
TPP – Contract Mechanism

Main impacts

- The thermal power plant receives a fixed revenue from the availability auction (LEN)
- Linked to the contract, there is also a variable revenue subject to the generation dispatch in the ACR (valued at the CVU)
- Any ballast purchase needs, and other net needs, make up the balance that is settled at PLD.

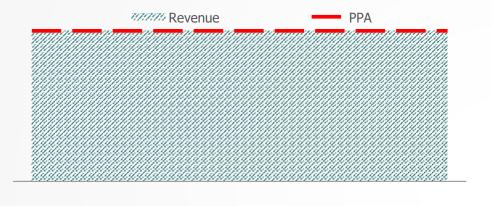
1.5 Other Sources

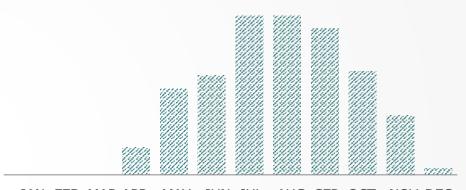
Biomass



Bioenergy is supplied by renewable plant-based materials. There are several types of biomass supply, which can be traditional firewood from natural forests, sugarcane bagasse, wood cultivated exclusively for energy generation, residues from sawmill industries, agglomerates and cellulose, in addition to biogas, generated by the decomposition waste.

Physical Guarantee Review - Ordinance 564/14


Valid for all Biomasses


Biomass - Revenue x Generated Energy

Revenue (R\$)

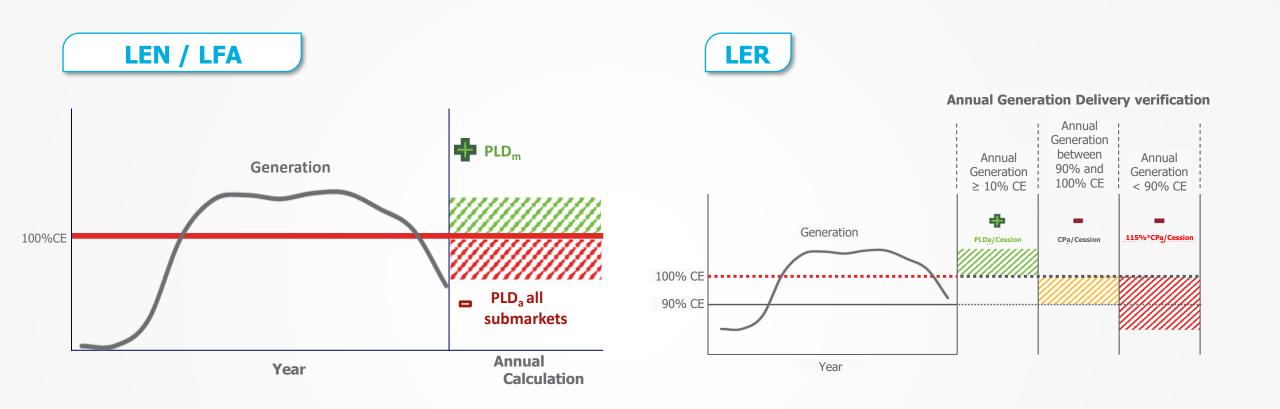
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Annual Generation

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Billing

Fixed 1/12 contract value

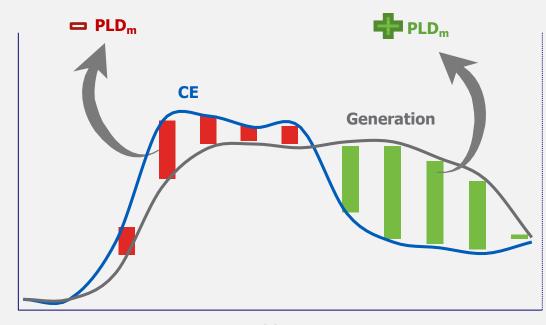

Accounting

G (MWh) x P (R\$)

Cash

Same as Billing 1/12 contract value

Biomass – Contract Calculation



When G > CE, after the fulfillment of the contract, surplus energy will be settled at PLD from the month of delivery

Biomass - ACL

Generation x Contracted Energy

Year

G < CE

Annual Reimbursement (PLDm)

CCEE Exposure
(PLD average)

Penalty (115% Price)

Reimbursement (Price)

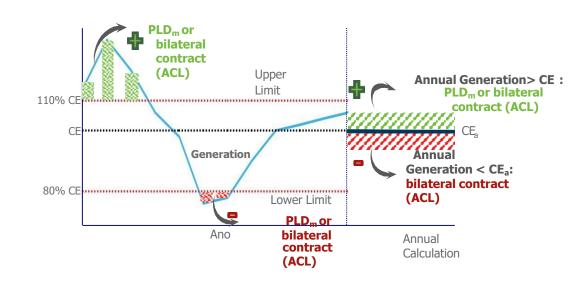
G > CE

CCEE Settlement (PLDm)

Energy Assignment

Solar

Solar energy is used on all continents and is increasingly used to generate electricity or heat. Photovoltaic (PV) cells, which can also be solar cells, are electronic devices that convert sunlight directly into electricity. Photovoltaics is one of the fastest growing renewable energy technologies.



Solar - ACL

Revenue (R\$)

CCEE Settlement

Billing

Seasonal Contract X Contract Price

Accounting

Seasonal Contract

X

Contract Price

+

Sales over 10% of PG

Cash

Same as Accounting

2.1 Sector Charges

Sector Charges – CFURH

Example: CPFL Geração Financial Statements (2Q22) - Portuguese only

CFURH (Financial Compensation for the Use of Water Resources)

Aneel Resolution No. 67/2001 establishes that hydroelectric generators must pay the amounts related to CFURH on a monthly basis for the purpose of Electric Energy Generation, calculated based on the monthly generation of their hydroelectric plants, observing the cases of exemption established by law.

15. RECEITA OPERACIONAL LÍQUIDA

	Controladora				Consolidado					
	2022		2021		2022		20	1		
Receita de operações com energia elétrica	2° Trimestre	1° Semestre								
Fornecimento de energia elétrica						1.302	2.761	7.191		
Furnas Centrais Elétricas S.A.	-	-	-	-	236.246	439.823	205.838	361.126		
Outras concessionárias, permissionárias e autorizadas	70.412	102.040	14.039	27.925	696.320	1.342.788	682.084	1.293.377		
Energia elétrica de curto prazo			481	1.019	8.027	16.626	20.286	45.485		
Suprimento de energia elétrica	70.412	102.040	14.520	28.944	940.593	1.799.237	908.208	1.699.988		
Receita de construção da infraestrutura de concessão	-	-			116.178	227.896	35.873	74.116		
Outras receitas e rendas	7.206	13.059	10.863	14.658	30.862	63.385	27.524	45.462		
Outra's receitas operacionais	7.206	13.059	10.863	14.658	147.040	291.281	63.397	119.578		
Total da receita operacional bruta	77.618	115.100	25.383	43.601	1.087.633	2.091.819	974.366	1.826.758		
Deduções da receita operacional										
ICMS	-	-			1.164	(1.192)	(801)	(1.008)		
PIS	(1.281)	(1.899)	(414)	(709)	(12.526)	(24.100)	(11.748)	(22.166)		
COFINS	(5.899)	(8.748)	(1.907)	(3.267)	(57.729)	(111.070)	(54.138)	(102.147)		
ISS	(128)	(250)	(111)	(218)	(128)	(250)	(111)	(218)		
Reserva global de reversão - RGR		-			(63)	(127)	(19)	(33)		
Programa de P & D e eficiência energética	-	-	-		(697)	(1.586)	(988)	(1.870)		
Compensação financeira pela utilização de recursos Hidricos - CFURH	-	-			(3.309)	(3.907)	(741)	(2.584)		
Outros	-	-	-	-	(2.490)	(4.610)	(2.058)	(4.245)		
	(7.308)	(10.897)	(2.432)	(4.195)	(75.778)	(146.842)	(70.602)	(134.272)		
Receita operacional líquida	70.310	104.203	22.951	39.407	1.011.855	1.944.977	903.764	1.692.486		

Sector Charges – CFURH

Example: CPFL Geração Financial Statements (2Q22) - Portuguese only

CFURH (Financial Compensation for the Use of Water Resources)

Aneel Resolution No. 67/2001

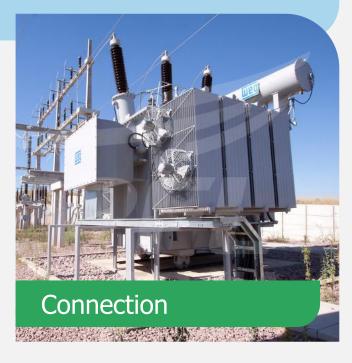
establishes that hydroelectric generators must pay the amounts related to CFURH on a monthly basis for the purpose of Electric Energy Generation, calculated based on the monthly

15. RECEITA OPERACIONAL LÍQUIDA

		Controladora				Consolidado				
	20	22	20	21	20	22	20	21		
Receita de operações com energia elétrica	2° Trimestre	1° Semestre	2° Trimestre	1° Semestre	2° Trimestre	1° Semestre	2° Trimestre	1° Semestre		
Fornecimento de energia elétrica		<u> </u>	<u> </u>	<u> </u>		1.302	2.761	7.191		
Furnas Centrais Elétricas S.A.					236.246	439.823	205.838	361.126		
Outras concessionárias, permissionárias e autorizadas	70.412	102.040	14.039	27.925	696.320	1.342.788	682.084	1.293.377		
Energia elétrica de curto prazo			481	1.019	8.027	16.626	20.286	45.485		
Suprimento de energia elétrica	70.412	102.040	14.520	28.944	940.593	1.799.237	908.208	1.699.988		
Receita de construção da infraestrutura de concessão	-				116.178	227.896	35.873	74.116		
Outras receitas e rendas	7.206	13.059	10.863	14.658	30.862	63.385	27.524	45.462		
Outras receitas operacionais	7.206	13.059	10.863	14.658	147.040	291.281	63.397	119.578		
Total da receita operacional bruta	77.618	115.100	25.383	43.601	1.087.633	2.091.819	974.366	1.826.758		
Deduções da receita operacional										
ICMS		-			1.164	(1.192)	(801)	(1.008)		
PIS	(1.281)	(1.899)	(414)	(709)	(12.526)	(24.100)	(11.748)	(22.166)		
COFINS	(5.899)	(8.748)	(1.907)	(3.267)	(57.729)	(111.070)	(54.138)	(102.147)		
ISS	(128)	(250)	(111)	(218)	(128)	(250)	(111)	(218)		
Reserva global de reversão - RGR	- 1	- 1	- 1	-	(63)	(127)	(19)	(33)		

Compensação financeira pela utilização de recursos Hidricos - CFURH plants, asserving the cases of exemption established by law.

ão de recursos Hidricos - CFURH (3.309) (3.907) (741) (2.58


Connection and Transmission Charges

Main portion of the TUST, refers to the transmission facilities that are part of the National Grid, with a voltage level equal to or higher than 230 kV, used to promote the optimization of the system's electrical and energy resources and, therefore, is applicable to all users.

Charge referring to power plants connected at voltage levels from 88 to 138 KV (**Distribution Grid**).

Amount due by the system user when connecting to installations owned by the Distribution Company, calculated based on costs associated with the installations under the user's responsibility, defined in accordance with the regulation.

Connection and Transmission Charges

Example: 2Q22 CPFL Energia Earnings Release - p. 47

2Q22 CPFL Results

Cost of Electric Power

Cost of Electric Energy - R\$ Million										
	2Q22	2Q21	Var.	1H22	1H21	Var.				
Energy Purchased in the Spot Market	15	49	-69.8%	31	80	-61.9%				
Energy Purchased Bilateral Contracts and ACL	63	35	81.7%	152	77	97.0%				
PIS and COFINS Tax Credit	(5)	(3)	49.2%	(12)	(7)	81.2%				
Cost of Electric Power Purchased for Resale	74	81	-9.1%	171	151	13.2%				
Basic Network Charges	29	25	14.3%	61	54	13.7%				
Connection Charges	3	3	5.0%	6	6	6.9%				
Charges for the Use of the Distribution System	10	8	15.1%	19	15	25.5%				
ESS/EER	0	4	-98.3%	0	0	85.6%				
PIS and COFINS Tax Credit	(1)	(1)	5.7%	(3)	(3)	12.2%				
Distribution System Usage Charges	40	40	2.2%	83	72	15.7 %				
Cost of Electric Energy	114	121	-5.4%	254	223	14.0%				

Connection and Transmission Charges

Example: 2Q22 CPFL Energia Earnings Release – p. 47

2Q22 CPFL Results

Cost of Electric Power

	Cost of Ele	ectric Energy -	R\$ Millior	1					
		2Q22	2Q21	Var.	1H22	1H21	Var.		
	Energy Purchased in the Spot Market	15	49	-69.8%	31	80	-61.9%		
	Energy Purchased Bilateral Contracts and ACL	63	35	81.7%	152	77	97.0%		
	PIS and COFINS Tax Credit	(5)	(3)	49.2%	(12)	(7)	81.2%		
	Cost of Electric Power Purchased for Resale	74	81	-9.1%	171	151	13.2%		
Basic Networ	k Charges	2	9	25	14.3%		61	54	13.7%
Connection C	harges		3	3	5.0%		6	6	6.9%
Charges for t	he Use of the Distribution System	1	0	8	15.1%		19	15	25.5%
	PIS and COFINS Tax Credit	(1)	(1)	5.7%	(3)	(3)	12.2%		
	Distribution System Usage Charges	40	40	2.2%	83	72	15.7%		
	Cost of Electric Energy	114	121	-5.4%	254	223	14.0%		CP

UBP – Use of the Public Good

- Annual amount paid as a concession for the granting of a hydraulic enterprise
- It usually corresponds to a percentage of the annual revenue to be earned by the generator
- It is equivalent to the grant period and its payment is made in monthly installments by the entrepreneur (it does not consider extension of the concession or authorization)
- Can be corrected by IGP-M or IPCA, depending on the project

VPA = VP*GF*VR*8760/100

Onde:

VPA = amount of annual payment for the use of public property

VP = percentage value to be applied on the estimated annual revenue from hydroelectric use, equal to 2.5%

GF = physical guarantee of hydroelectric use, in average MW, defined by the granting power, and in the absence of this, the value obtained from the product between the installed power and the capacity factor equal to 0.55

VR = Annual Reference Value, in R\$/MWh, in effect on the date of publication of the administrative act approving the modification of the concession's operating regime

